1,018 research outputs found

    Development of a Chaff Dispense Program for Target Tracking Radar Deception

    Get PDF
    This study aims to develop an appropriate chaff dispensing program to deceive the target tracking radar (TTR) effectively. Chaff is a countermeasure commonly used by fighter aircraft to deceive TTR. However, there has been a lack of methodology for calculating chaff dispense programs that take into account the specific characteristics of the fighter, chaff, and TTR. This study proposes a methodology that considers these variables to calculate chaff dispense programs and addresses this gap. The proposed method is demonstrated through TESS engagement, which shows its effectiveness in various engagement situations

    Development of a Chaff Dispense Program for Target Tracking Radar Deception

    Get PDF
    This study aims to develop an appropriate chaff dispensing program to deceive the target tracking radar (TTR) effectively. Chaff is a countermeasure commonly used by fighter aircraft to deceive TTR. However, there has been a lack of methodology for calculating chaff dispense programs that take into account the specific characteristics of the fighter, chaff, and TTR. This study proposes a methodology that considers these variables to calculate chaff dispense programs and addresses this gap. The proposed method is demonstrated through TESS engagement, which shows its effectiveness in various engagement situations

    Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases

    Get PDF
    The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases

    Alleviating psoriatic skin inflammation through augmentation of Treg cells via CTLA-4 signaling peptide

    Get PDF
    Psoriasis is a chronic inflammatory skin disease characterized by hyperplasia of keratinocytes and immune cell infiltration. The IL-17-producing T cells play a key role in psoriasis pathogenesis, while regulatory T (Treg) cells are diminished during psoriatic inflammation. Current psoriasis treatments largely focus on IL-17 and IL-23, however, few studies have explored therapeutic drugs targeting an increase of Treg cells to control immune homeostasis. In this study, we investigated the effects of a cytotoxic T lymphocyte antigen-4 (CTLA-4) signaling peptide (dNP2-ctCTLA-4) in Th17, Tc17, γδ T cells, Treg cells in vitro and a mouse model of psoriasis. Treatment with dNP2-ctCTLA-4 peptide showed a significant reduction of psoriatic skin inflammation with increased Treg cell proportion and reduced IL-17 production by T cells, indicating a potential role in modulating psoriatic skin disease. We compared dNP2-ctCTLA-4 with CTLA-4-Ig and found that only dNP2-ctCTLA-4 ameliorated the psoriasis progression, with increased Treg cells and inhibited IL-17 production from γδ T cells. In vitro experiments using a T cell-antigen presenting cell co-culture system demonstrated the distinct mechanisms of dNP2-ctCTLA-4 compared to CTLA-4-Ig in the induction of Treg cells. These findings highlight the therapeutic potential of dNP2-ctCTLA-4 peptide in psoriasis by augmenting Treg/Teff ratio, offering a new approach to modulating the disease

    Health-Related Quality of Life Using the EuroQol 5D Questionnaire in Korean Patients with Type 2 Diabetes

    Get PDF
    We aimed; 1) to determine the validity of the EuroQol 5D (EQ-5D) for the health-related quality of life (HRQOL) of Korean patients with type 2 diabetes, and 2) to identify associated factors of the HRQOL of these patients. Follow-up surveys were conducted for consecutive patients with type 2 diabetes. HRQOL was assessed using the EQ-5D and the Short Form-36 (SF-36). The validity of EQ-5D was assessed with the perspectives of known group, convergent and discriminant validity. Additionally, a linear mixed model using a backward elimination was used for identify associated factors. Of the 1,072 patients included in the first survey, 858 (80.0%) completed the questionnaires in the follow-up. In the known group validity, the problem rates in each EQ-5D dimension were highest among women, elderly people, and less-educated subjects. The Spearman's ρ between the EQ-5D and the SF-36 scales were larger in the comparable dimensions than those in the less comparable dimensions. In the final model, we found that sex, age, education, body mass index, atrial fibrillation, stroke, and retinopathy were statistically significant. Our data suggest that the EQ-5D is a valid tool for Korean patients with type 2 diabetes and that various factors could affect their HRQOL

    Charge-spin correlation in van der Waals antiferromagenet NiPS3

    Get PDF
    Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS3, a van derWaals antiferromagnet, from our study of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray absorption and photoemission spectroscopy, and density-functional calculations. NiPS3 displays an anomalous shift in the optical spectral weight at the magnetic ordering temperature, reflecting a strong coupling between the electronic and magnetic structures. X-ray absorption, photoemission and optical spectra support a self-doped ground state in NiPS3. Our work demonstrates that layered transition-metal trichalcogenide magnets are a useful candidate for the study of correlated-electron physics in two-dimensional magnetic material.Comment: 6 pages, 3 figur

    String theoretic QCD axions in the light of PLANCK and BICEP2

    Get PDF
    The QCD axion solving the strong CP problem may originate from antisymmetric tensor gauge fields in compactified string theory, with a decay constant around the GUT scale. Such possibility appears to be ruled out now by the detection of tensor modes by BICEP2 and the PLANCK constraints on isocurvature density perturbations. A more interesting and still viable possibility is that the string theoretic QCD axion is charged under an anomalous U(1)_A gauge symmetry. In such case, the axion decay constant can be much lower than the GUT scale if moduli are stabilized near the point of vanishing Fayet-Illiopoulos term, and U(1)_A-charged matter fields get a vacuum value far below the GUT scale due to a tachyonic SUSY breaking scalar mass. We examine the symmetry breaking pattern of such models during the inflationary epoch with the Hubble expansion rate 10^{14} GeV, and identify the range of the QCD axion decay constant, as well as the corresponding relic axion abundance, consistent with known cosmological constraints. In addition to the case that the PQ symmetry is restored during inflation, there are other viable scenarios, including that the PQ symmetry is broken during inflation at high scales around 10^{16}-10^{17} GeV due to a large Hubble-induced tachyonic scalar mass from the U(1)_A D-term, while the present axion scale is in the range 10^{9}-5\times 10^{13} GeV, where the present value larger than 10^{12} GeV requires a fine-tuning of the axion misalignment angle. We also discuss the implications of our results for the size of SUSY breaking soft masses.Comment: 29 pages, 1 figure; v3: analysis updated including the full anharmonic effects, references added, version accepted for publication in JHE
    corecore